

6.5.

Office of Naval Research

Contract N00014-76-C-0060, NR 064-478

Technical Report, No. 30

14mR-34

RAPID CRACK PROPAGATION AND ARREST IN POLYMERS

by

A.S./Kobayashi and S./Mall

October 1977

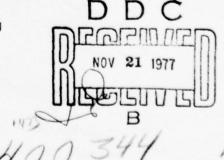
The research reported in this technical report was made possible through support extended to the Department of Mechanical Engineering, University of Washington, by the Office of Naval Research under Contract N00014-76-C-

C-0060, NR 064-478. Reproduction in whole or in part is permitted for any

purpose of the United States Government.

AD NO.

Department of Mechanical Engineering


College of Engineering

University of Washington

DISTRIBUTION STATEMENT A

Approved for public release;

Distribution Unlimited

INTRODUCTION

As a result of concerted research efforts of the past two decades, many of the basic problems in linear fracture mechanics have been resolved with the gradual acceptance of fracture mechanics as a design tool in industry. Although linear fracture mechanics can be used effectively in preventing much of the predicted fracture modes, there are limited occasions when fracture cannot be avoided due to unusual loading conditions which may or may not occur during the lifetime of a structure. As a secondary safety measure, a crack arrest mechanism which could prevent catastrophic failures of critical structural components are thus required in some designs. Since the design of a crack arrest mechanism requires knowledge of fracture dynamics, increasing research efforts are being expended in studying the basic laws which govern rapid crack propagation and crack arrest. Progress in fracture dynamics, however, is hampered by the lack of comparable theoretical and experimental tools which contributed to the rapid progress made in linear fracture mechanics.

Following the pioneering paper of Wells and Postl, three groups of researchers $^{2-8}$ have used either dynamic photoelastic technique or dynamic caustics to determine experimentally the dynamic state of stress surrounding a propagating crack tip in various birefringent polymers. These optical techniques can be used to determine within reasonable accuracy the dynamic stress intensity factor of a rapidly running or arresting crack. No comparable experimental technique exists for measuring the dynamic stress intensity factor in a fracturing m tall plate. As a result, considerable data on the fracture dynamic properties of birefringent polymers have been generated for the purpose of providing insights into the dynamic fracture toughness, K $_{1D}$, and crack arrest stress intensity factor, K $_{1a}$, of metals. In the following a review and comparison of published fracture dynamic properties of four birefringent polymers, a polyester resin Homalite-100, epoxy resin Araldite B, modified epoxy resin and polycarbonate, are given.

DYNAMIC FRACTURE TOUGHNESS

Dynamic fracture toughness, K_{ID} , is the dynamic counterpart of the static fracture toughness, K_{IC} , and is equal to the measured dynamic stress intensity factor, K_{ID}^{Oyn} , in a fracturing material. Considerable direct⁶⁻⁸ and indirect^{10,12} evidence showing unique relations between K_{ID} and crack velocity, \hat{a} , for the above polymers and some metals have been generated to date. The K_{ID} versus \hat{a} relations of birefringent polymers were established through the use of various fracture specimens, such as those shown in Figure 1. For these polymeric fracture specimens, one notes considerable differences in specimen sizes in contrast to the small differences between the respective dilatational wave velocities shown in Table 1. Thus the transit time for a dynamic event to reach a moving crack tip would be predominantly governed by the specimen size, which could result in differences in dynamic responses of specimens of similar configuration but different sizes. The extent of dynamic interaction with the crack velocity and possibly with the postulated material property of K_{ID} is not clear at this time but it is generally understood that smaller fracture specimens will accentuate the dynamic effects. ¹²

Using dynamic photoelasticity, T. Kobayashi and his colleagues^{6,7} determined K_{ID} in a variety of single-edged notch (SEN) specimens, wedge-loaded double cantilever beam (DCB) specimens and wedge-loaded contoured DCB (C-DCB) specimens machined from 12.7mm thick Homalite-100 plates as shown in Figure 2. Figure 3 shows the K_{ID} determined by the authors for similar SEN and smaller DCB specimens machined from thinner Homalite-100 plates. Other than the large data scatter⁵, which is not evident in Figure 3, the authors' K_{ID} versus à relations and those of T. Kobayashi et al. for different Homalite-100 plates are in reasonable agreement under static loading.

* For a more detailed explanation of the lesser known method of caustics, see for example Reference 9.

DISTRIBUTION/AVAILABILITY CODES
Dist. AVAIL and or SPECIAL

PER FORM 50

Figure 3 also shows the same 9.5mm thick Homalite-100 plate tested under the impact loading of dynamic tear testing (DII)2.5. Although data scatters are considerably larger in the DII results, the averaged $K_{\rm ID}$ as shown in Figure 3 is substantially lower than the corresponding $K_{\rm ID}$ in statically loaded specimens at lower crack velocities. The lower $K_{\rm ID}$ at lower a is obtained when the crack propagates into the region closer to the impact zone which is still in compression under highly dynamic loading condition which probably does not exist in static loading of other specimens shown in Figure 1. This change in minimum $K_{\rm ID}$ under dynamic loading could cast doubt on the validity of using the minimum dynamic fracture toughness, $K_{\rm Im}$, as a conservative estimate of a fracture criterion.13

Figure 4 shows the K_{ID} versus a curves for Araldite-B⁸, two modified epoxies⁷ and polycarbonate⁵. The static fracture toughness of these polymers varied from somewhat tough to extremely tough material in comparison to the brittle Homalite-100 plates and are thus grouped separately in this figure. It is interesting to note that the spread in the bifurcated K_{ID} versus a curves for the tougher, modified epoxies is approximately equal to the scatter band in Araldite B and polycarbonate specimens. Also note that the slant in K_{ID} versus a curves of the DDT specimens in Figures 3 and 4 suggest again that the minimum K_{ID} at lower a could be significantly altered under dynamic load-

ing.

Since the dynamic effect in a finite size fracture specimen is governed by its loading conditions, such effect could be detected in statically loaded fracture specimens if the crack initiation stress intensity factor, K_{IQ}, is extremely high. Figure 5 shows the K_{ID} versus à curves for two different wedge-loaded DCB specimens^{3,7} machined from different Homalite-100 plates. As shown in Figure 1, the two DCB specimens differed by more than a factor of 2 in linear dimensions but both specimens were loaded at a high K_{IQ} of more than twice the K_{IC} values, thus causing the crack to run through the entire specimen height without arresting. Despite the difference in sizes, both K_{ID} versus crack extension relations, and more so the à versus crack extension relations, were very similar thus indicating that the stress wave effects generated by a crack propagating at the same à will be similar but its influence on K_{ID} will vary with the transit time of the stress wave returning to the propagating crack tip.

The above results show that K_{ID} is influenced by stress wave effects and that K_{ID} at lower a could be altered significantly under dynamic loading. In the absence of significant dynamic effects, however, a unique K_{ID} versus a relation of the F shape appears to adequately characterize the dynamic frac-

ture response of these birefringent polymers.

CRACK ARREST STRESS INTENSITY FACTOR

The results of Figure 2 and much of Figure 3 have led Irwin 13 and others 6,7,15 to postulate the use of minimum dynamic fracture toughness, K_{Im} , as a conservative estimate of a crack arrest stress intensity factor, K_{Ia} . In addition, Kalthoff et al. 8 have shown that this K_{Im} is indeed a material property as shown in Figure 6 by the constant K_{Im}^{0} observed in six wedge-loaded DCB specimens machined from Araldite B plates. Noting that the existence of such K_{Im}^{0} could be a characteristic response of the particular specimen geometry, the authors replotted some previously published crack arrest data 14 in Figure 7 following the format of Kalthoff et al. For the four SEN specimens with a geometry shown in Figure 1, not only did a constant K_{Im}^{0} similar to the Kalthoff data exist but also the corresponding static stress intensity factor after crack arrest, K_{Im}^{0} a varied with the total crack length at arrest as shown by Kalthoff et al. This variation in K_{Im}^{0} refutes the contention of some that crack arrest can be characterized by a material property which is the static stress intensity factor a few milliseconds after crack arrest 13 , 15 .

The differences between K_{ID}^{dyn} obtained for the larger SEN specimen in Figures 7 and the lower K_{Im} observed in the smaller DCB specimens in Figure 3, needless to mention the noticeable difference in K_{Im} obtained from the DIT

specimens, leads one to speculate again that dynamic effects may significantly alter the observed $K_{I\,m}$ in different specimens. Despite the high $K_{I\,0}$ (varied from one and one-half to four times the $K_{I\,c}$) in Kalthoff's wedge-loaded DCB specimens, the tougher Araldite B material seemed to attenuate the stress wave effects more than in brittle Homalite-100 wedge-loaded DCB specimens of similar size 7 . As a result, the apparent existence of a $K_{I\,m}$ would be more noticeable in the Araldite B specimens loaded under fixed wedge-displacement condition 8 .

CONCLUSION

There is mounting evidence supporting the existence of a unique K_{ID} versus a relation which was derived from fracture dynamic experiments using large polymeric specimen subjected to static loading. The existence of such unique K_{ID} versus a relation and hence the validity of a K_{Im} as a conservative estimate of the crack arrest stress intensity factor under dynamic loading, however, remain unresolved.

ACKNOWLEDGEMENT

The results of this investigation were obtained in a research contract funded by the Office of Naval Research under Contract No. N00014-76-C-0060, NR 064-478. The authors wish to acknowledge the support and encouragement of Drs. N.R. Perrone and D. Mulville of ONR during the course of this investigation.

REFERENCES

- A.A. Wells and D. Post, Proc. of Society for Experimental Stress Analysis, 16, 69 (1958).
- 2. A.S. Kobayashi and C.F. Chan, Experimental Mechanics, 16, 176 (May 1976).
- A.S. Kobayashi, S. Mall and M.H. Lee, Cracks and Fracture, ASTM STP 601, 274 (June 1976).
- A.S. Kobayashi, B.G. Wade and W.B. Bradley, Deformation and Fracture of High Polymers, H.H. Kausch, J.A. Hassell and R.I. Jaffee, Ed., Plenum Press, New York, 487 (1973).
- S. Mall, "A Numerical-Experimental Investigation of Dynamic Fracture", a Ph.D. dissertation submitted to University of Washington (1977).
- T. Kobayashi and J.W. Dally, Fast Fracture and Crack Arrest, ASTM STP 627, 257 (July 1977).
- G.R. Irwin, J.W. Dally, T. Kobayashi, W.L. Fourney and J.M. Etheridge, "A Photoelastic Characterization of Dynamic Fracture", University of Maryland Report prepared for the U.S. Nuclear Regulatory Commission, NUREG-0072, NRC-5, December 1976.
- NUREG-0072, NRC-5, December 1976.

 8. J. Kalthoff, J. Beinert and S. Winkler, Fast Fracture and Crack Arrest, ASTM STP 627, 161 (July 1977).
- P.S. Theocaris, J. of Applied Mechanics, Trans. of ASME, 37, Series E, No. 2, 409 (June 1970).
- R.G. Hoagland, P.C. Gehlen, A.R. Rosenfield and G.T. Hahn, Fast Fracture and Crack Arrest, ASTM STP 627, 203 (July 1977).
- G.T. Hahn, P.C. Gehlen, R.G. Hoagland, C.W. Marschall, M.F. Kanninen, C. Popelar and A.R. Rosenfield, "Critical Experiments, Measurements and Analyses to Establish a Crack Arrest Methodology for Nuclear Pressure Vessel Steels", Task 62, Second Annual Report, Battelle Columbus Laboratories BMI-1959 (October 1976).
- M.F. Kanninen, E. Mills, G.T. Hahn, C.W. Marschall, D. Corek, A. Coyle, K. Masubushi, K. Itoga, "A Study of Ship Hull Crack Arrest Systems", Project SR-226, Battelle Columbus Laboratories Report (December 18, 1977).
- G.R. Irwin, Dynamic Fracture Toughness, The Welding Institute, Cambridge, 1 (July 1976).

14. W.B. Bradley and A.S. Kobayashi, Engrg. Fracture Mechanics, 3, 317 (June 1971).

15. R.P. Crosley and E.J. Ripling, Fast Fracture and Crack Arrest, ASTM STP 627, 203 (July 1977).

Table 1. Elastic Properties of Model Materials for Fracture Specimens

Material	Static		Dynamic			
	Modulus of Elas- ticity GPa	Poisson's Ratio	Modulus of Elas- ticity GPa	Poisson's Ratio	Fracture Toughness MPavm	Dilatational Wave Velocity m/sec
Homalite-100 [2-4]	3.72	0.345	4.65	0.345	0.650	2400
Homalite-100 [5]	3.72	0.36	4.80	0.36	0.415	2590
Homalite-100 [6,7]	3.86	-	4.82	0.31	0.450	2150
Modified Epoxy Blend No.3[7]	3.01	-	3.95	0.34	1.180	1970
Modified Epoxy Blend No.12[7]		-	4.07	0.37	0.910	2020
Araldite B [8]	3.38	0.33	3.66	0.39	0.790	2500
Polycarbonate [5]	2.38	0.36	2.72	0.36	3.340	1960

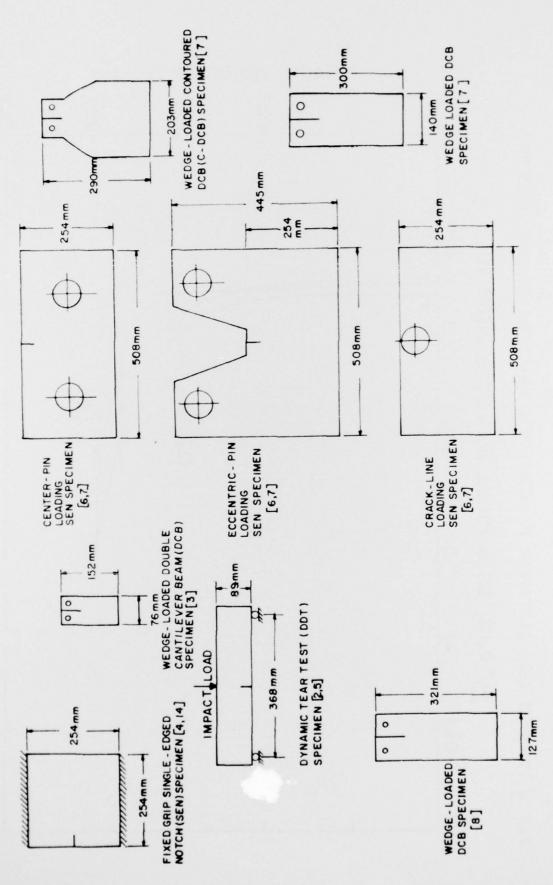


FIGURE I. SPECIMENS USED IN FRACTURE DYNAMIC ANALYSIS

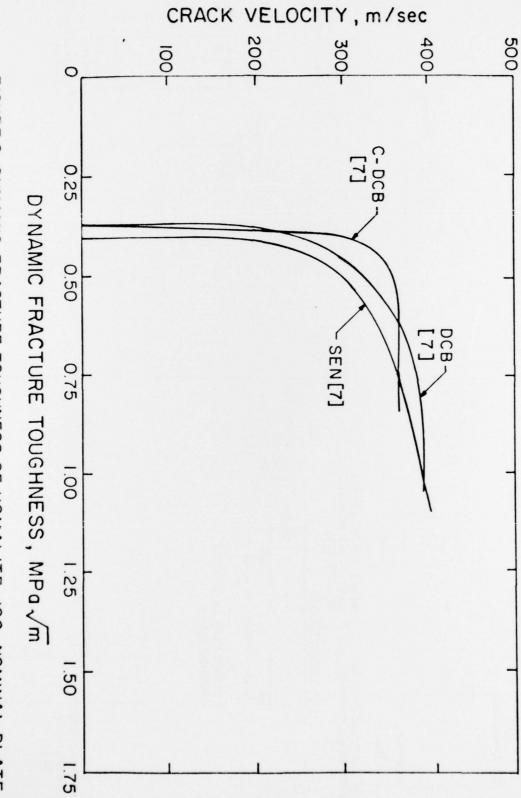


FIGURE 2. DYNAMIC FRACTURE TOUGHNESS OF HOMALITE-100, NOMINAL PLATE THICKNESS 12.7 mm.

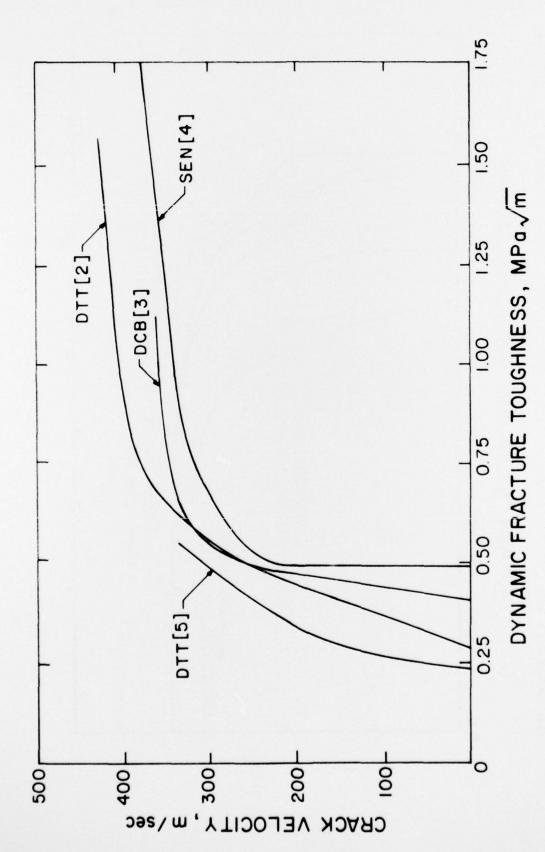
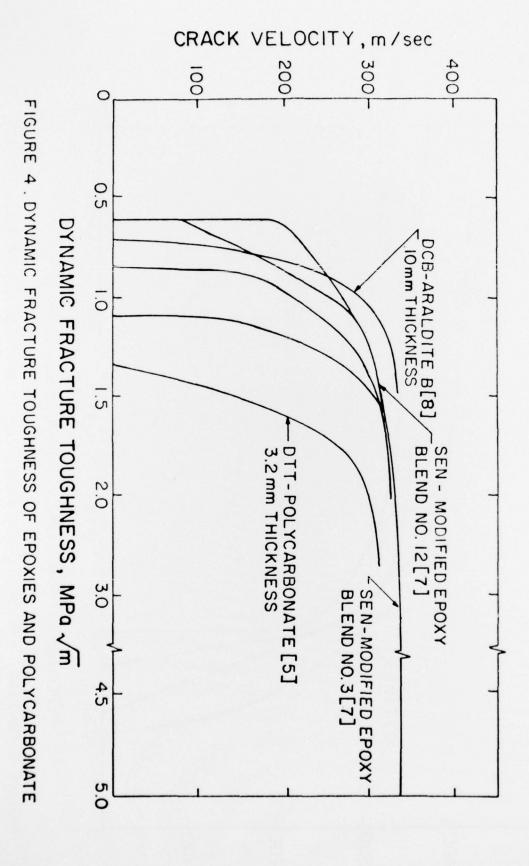



FIGURE 3. DYNAMIC FRACTURE TOUGHNESS OF HOMALITE-100, NOMINAL PLATE THICKNESS 9.5 mm.

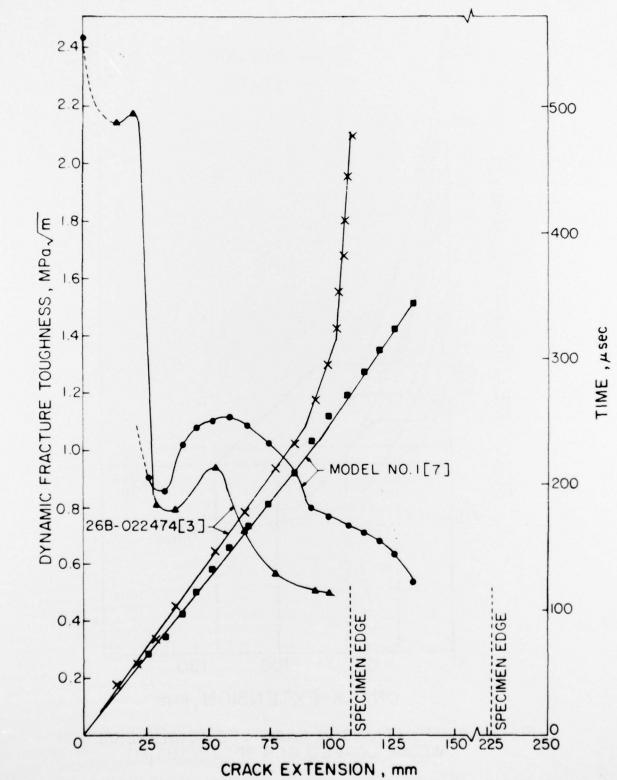


FIGURE 5. VARIATION OF DYNAMIC FRACTURE TOUGHNESS AND CRACK EXTENSION VERSUS TIME RELATION IN TWO WEDGE-LOADED DCB SPECIMENS WITHOUT CRACK ARREST,

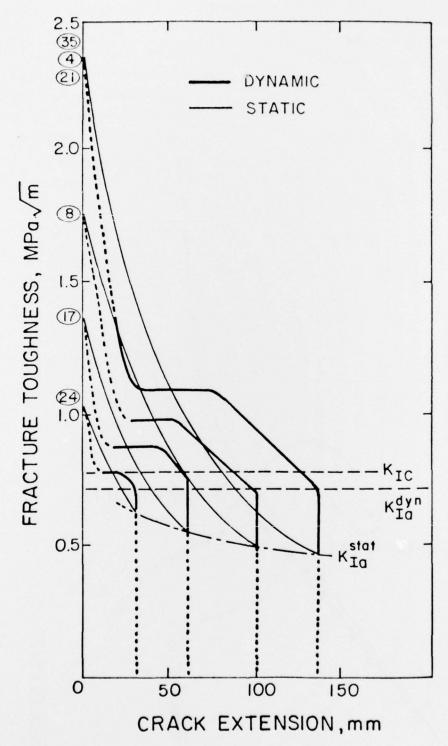


FIGURE 6. VARIATIONS IN FRACTURE TOUGHNESSES IN WEDGE-LOADED DCB SPECIMENS[8]

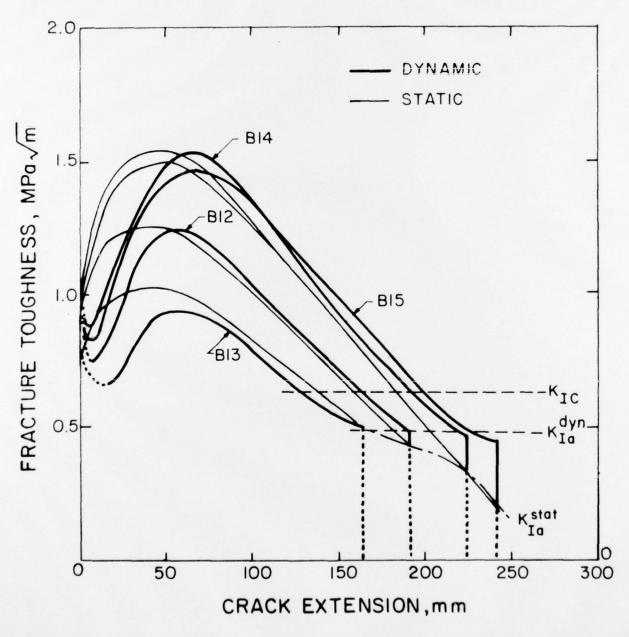


FIGURE 7. VARIATIONS IN FRACTURE TOUGHNESSES IN WEDGE-LOADED DCB SPECIMENS [14]

Navy (Continued)
David M. Taylor Naval Ship Research
and Development Center
Annapolis, MO 21402
Attn: Code 2740 PART 1 - GOVERNMENT Administrative and Liwison Activities Office of Naval Research Department of the Navy Anlington, VA 22217 Attn: Code 474 (20 47) 281 U.S. Naval Weapons Center China Lake, CA 93555 Attn: Code 4062 4520 Director Office of Naval Research Branch Office 405 Summer Street Boston, MA 02210 Commanding Office U.S. Naval Civil Engineering Laboratory Code L31 Port Hueneme, CA 93041 Office of Navel Research Branch Office S36 South Clark Street Chicago, JL 60605 Naval Surface Weapons Center White Oak Silver Spring, MD 20910 Attn: Code WR-10 WA-20 Director Office of Naval Research New York Area Office 715 Broadway - 5th Floor New York, NY 10003 Technical Director Naval Ocean Systems Center San Diego, CA 92152 Birector Office of Naval Research Branch Office 1030 East Green Street Pasadena, CA 91106 Supervisor of Shipbuilding U.S. Navy Newport News, VA 23607 Office of Naval Research San Francisco Area Office One Hallide Plaza, Suite 601 San Francisco, CA 94102 U.S. Navy Underwater Sound Reference Division Naval Research Laboratory P.O. Box 8337 Orlando, FL 32806 Driango, FL 32006 Chief of Naval Operations Department of the Navy Nashington, DC 20350 Attm: Code 0P-098 Strategic Systems Project Office Department of the Navy Nashington, DC 20376 Attm: MSP-200 Naval Research Laboratory (6) Code 2627 Washington, D.C. 20375 Defense Documentation Center (12) Cameron Station Alexandria, VA 22314 Maral Sesearch Laboratory Washington, D.C. 20375 Attn: Code 8400 8410 8430 8440 Naval Air Systems Command
Department of the Navy
Washington, DC 20361
Attn: Code 5302 (Aerospace & Structures)
604 (Technical Library)
3208 (Structures) Naval Air Development Center Director, Aerospace Mechanics Warminster, PA 18974 U.S. Naval Academy Engineering Department Annapolis, MD 21402 Undersea Explosion Research Division Naval Ship Research & Dev. Center Norfolk Naval Shipyard Portsmouth, VA 23709 Attn: Dr. E. Palmer, Code 177

Other Government Activities Commandant
Chief, Testing & Development Division
U.S. Coast Guard
1300 E Street, NW
Washington, DC 20226 Technical Director
Marine Corps Development and
Education Command
Quantico, VA 22134 Director National Bureau of Standards Washington, DC 20034 Attn: Mr. B.L. Wilson, EM 219 Dr. M. Gaus National Science Foundation Environmental Research Division Washington, DC 20550 Library of Congress Science and Technology Division Washington, DC 20540 Director Defense Nuclear Agency Washington, DC 20305 Attn: SPSS Director Defense Research & Engineering Technical Library Room 3C128 The Pentagon Washington, DC 20301 Mr. Jerome Persh Staff Specialist for Materials and Structures ODDR&E, The Pentagon Room 3D1089 Washington, DC 20301 Chief, Airframe & Equipment Branch FS-120 FS-120 Office of Flight Standards Federal Aviation Agency Washington, DC 20553 Chief, Research and Development Maritime Administration Washington, DC 20235 Picatinny Arsenal Plastics Technical Evaluation Center Attn: Technical Information Center

NASA (Continued)

Scientific & Technical Information Facility
NASA Representative (S-AK/DL)
P.D. Box 5700
Bethesda, MD 20014

Other Government Activities (Continued)
Deputy Chief, Office of Ship Construction
Maritime Administration
Washington, DC 20235
Attn: Mr. U.L. Russo Actin Mr. U.L. Russo
National Academy of Sciences
National Research Council
Ship Hull Research Committee
2010 Constitution Avenue
Washington, DC 20418
Actin: Mr. A.B. Lytle
National Science Foundation
Engineering Mechanics Section
Division of Engineering
Washington, DC 20550
Commander Field Command Commander Field Command Defense Nuclear Agency Sandia Base Albuquerque, NM 87115 Atomic Energy Commission Div. of Reactor Dev. & Tech Germantown, Maryland 20767

Naval Facilities Engineering Command 200 Stovall Street Alexandria, VA 22332 Attn: Code 03 (Research & Development) 048 14114 (Technical Library)

Naval Sea Systems Command
Department of the Navy
Washington, DC 20362
Attn: Code 01 (Research & Technology)
037 (Skip Silencing Division)
035 (Mechanics & Materials)

Naval Ship Engineering Center Department of the Navy Washington, DC 20362 Attn: Code 61056 6114 6128

Commanding Officer and Director
David W. Taylor Naval Ship Research
and Development Center
Bethesda, MD 20034
Attn: Code 042
17
172
173
174
1800

Naval Underwater Systems Center Newport, RI 02840 Attn: Dr. R. Traingr

Naval Surface Weapons Center Dahlgren Laboratory Dahlgren, VA 22448 Attn: Code DG-20 DG-30

Technical Director Mare Island Naval Shipyard Vallejo, CA 94592

Army

Army
Commanding Officer (2)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709
Att- Mr. J.J. Murray, CRO-AA-IP

Army (Continued) MAGGS Research Center Watervliet, NY 12189 Attn: Director of Research U.S. Army Materials and Mechanics Research Center Watertown, MA 02172 Attn: Dr. R. Shea, DRXMR-T

U.S. Army Missile Research & Dev. Center Redstone Scientific Information Center Chief, Document Section Redstone Arsenal, AL 35809

Army Research and Development Center Fort Belvoir, VA 22060

Air Force
Commander WADD
Wright-Patterson Air Force Base
Dayton, OH 45433
Attn. Code WWMMD
AffDL (FDDS)
Structures Division
AFLC (MCEEA)

Chief, Applied Mechanics Group U.S. Air Force Institute of Technology Wright-Patterson Air Force Base Dayton, OH 45433

Chief, Civil Engineering Branch WLRC, Research Division Air Force Weapons Laboratory Kirtland Air Force Base Albuquerque, NM 87117

Air Force Office of Scientific Research Bolling Air Force Base Washington, DC 20332 Attn: Mechanics Division

Department of the Air Force Air University Library Maxwell Air Force Base Montgomery, AL 36112

National Aeronautics & Space Administration Structures Research Division Langley Research Center Langley Station Hampton, VA 23365

National Aeronautics & Space Administration Associate Administrator for Advanced Research and Technology Washington, D.C. 32546

PART 2 - CONTRACTORS AND OTHER TECHNICAL COLLABORATORS

Dr.J. Tinsley Oden University of Texas at Austin 345 Engineering Science Building Austin, 1x 78712

Professor Julius Miklowitz California Institute of Technology Div. of Engineering & Applied Sciences Pasadena. CA 91109

Or. Harold Liebowitz, Dean School of Engineering & Applied Science George Mashington University Washington, DC 20052

Professor Eli Sternberg California Institute of Technology Div. of Engineering & Applied Science Pasadena, CA 91109

Pasadena, CA 91109
Professor Paul M. Naghdi
University of California
Department of Mechanical Engineering
Berkeley, CA 94720
Professor P.S. Symonds
Brown University
Division of Engineering
Providence, RI 02912

Professor A.J. Durelli Oakland University School of Engineering Rochester, MI 48063

Rochester, Mi 48063
Professor F.L. DiMaggio
Columbia University
Department of Civil Engineering
New York, NY 10027
Professor Norman Jones
Massachusetts Institute of Technology
Department of Ocean Engineering
Cambridge, MA 02139

Professor E.J. Skudrzyk Pennsylvania State University Applied Research Laboratory Department of Physics State College, PA 16801

Professor J. Kempner
Polytechnic Institute of New York
Dept. of Aerospace Engrg. & Applied Mech.
333 Jay Street
Brooklyn, NY 11201

Professor J. Klösner
Polytechnic Institute of New York
Dept. of Aerospace Engrg. & Applied Mechanics
333 Jay Street
Brooklyn, NY 11201
Professor R.A. Schapery
Texas ARM University
Department of Civil Engineering
College Station, IX 77843
Professor Walter D. Pilley Professor Walter D, Pilkey University of Virginia Research Laboratories for the Engineering Sciences School of Engineering and Applied Sciences Charlottesville, VA 22901 Charlottesville, VA 22901
Professor K.D. Willmert
Clarkson College of Technology
Department of Mechanical Engineering
Potsdam, NY 13676
Dr. H.G. Schaeffer
University of Maryland
Aerospace Engineering Department
College Park, MD 20742
Dr. Walter E. Waller Dr. Walter E. Haisler Texas AAM University Aerospace Engineering Department College Station, 1% 17843 Dr. B.S. Berger University of Maryland Department of Mechanical Engineering College Park, MD 20742 Dr. L.A. Schmit University of California School of Engineering & Applied Science Los Angeles. CA 90024 Or. Hussein A. Kamel University of Arizona Dept. of Aerospace & Mechanical Engineering Tucson, AZ 85721 Dr. S.J. Fenves Carnegle-Mellon University Department of Civil Engineering Schenley Park Pittsburgh, PA 15213

Dr. Ronald L. Huston Dept. of Engineering Analysis University of Cincinnati Cincinnati, OH 45221

Universities (Continued)

Professor G.C.M. Sih Lehigh University Institute of Fracture and Solid Mechanics Bethlehem, PA 18015

Professor Albert S. Kobayashi University of Washington Department of Mechanical Engineering Seattle, WA 98195

Professor Daniel Frederick Virginia Polytechnic Institute and State University Dept. of Engineering Mechanics Blacksburg, VA 24061

Professor A.C. Eringen Dept. of Aerospace & Mech. Sciences Princeton University Princeton, NJ 08540

Professor E.H. Lee Stanford University Div. of Engineering Mechanics Stanford, CA 94305

Professor Albert I. King Wayne State University Biomechanics Research Center Detroit, MI 48202

Dr. V.R. Hodgson Wayne State University School of Medicine Detroit, MI 48202

Dean B.A. Boley Northwestern University Department of Civil Engineering Evanston, IL 60201

Professor P.G. Hodge, Jr. University of Minnesota Dept. of Aerospace Engineering and Mechanics Minneapolis, MN 55455

Dr. D.C. Drucker University of Illinois Dean of Engineering Urbana, IL 61801

Professor N.M. Newmark University of Illinois Dept. of Civil Engineering Urbana, IL 61803

Professor E. Reissner University of California, San Diego Dept. of Applied Mechanics La Jolla, CA 92037 Professor William A. Nash University of Massachusetts Dept. of Mechanics & Aerospace Engineering Amherst, MA 01002

Professor G. Herrmann Stanford University Department of Applied Mechanics Stanford, CA 94305

Professor J.D. Achenbach Northwestern University Department of Civil Engineering Evanston, IL 60201

Professor G.R. Irwin University of Maryland Dept. of Mechanical Engineering College Park, MD 20742

Professor S.B. Dong University of California Department of Mechanics Los Angeles, CA 90024

Professor Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engineering Philadelphia, PA 19104

Professor H.W. Liu Syracuse University Dept. of Chemical Engineering & Metallurgy Syracuse, NY 13210

Professor S. Bodner Technion R&D Foundation Haifa, Israel

Professor Werner Goldsmith University of California Dept. of Mechanical Engineering Berkeley, CA 94720

Professor R.S. Rivlin Lehigh University Center for the Application of Mathematics Bethlehem, PA 18015

Professor F.A. Cozzarelli State University of New York at Buffalo Div. of Interdisciplinary Studies Karr Parker Engineering Building Chemistry Road Buffalo, NY 14214

Professor Joseph L. Rose Drexel University Dept. of Mechanical Engineering & Mechanics Philadelphia, PA 19104

Universities (Continued)

Professor Kent R. Wilson University of California, San Diego Department of Chemistry La Jolla, CA 92093

Professor B.K. Donaldson University of Maryland Aerospace Engineering Department College Park, MD 20742

Professor Joseph A. Clark Catholic University of America Dept. of Mechanical Engineering Washington, DC 20064

Professor T.C. Huang University of Wisconsin-Madison Dept. of Engineering Mechanics Madison, WI 53706

Dr. Samuel B. Batdorf University of California School of Engineering & Applied Science Los Angeles, CA 90024

Industry and Research Institutes

U.S. Naval Postgraduate School Library Code 0384 Monterey, CA 93940

Webb Institute of Naval Architecture Attn: Librarian Crescent Beach Road, Glen Cove Long Island, NY 11542

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTA	READ INSTRUCTIONS BEFORE COMPLETING FORM		
REPORT HUMBER	3. GOVT ACCESSION NO.	3 ARCIPIENT'S CATALOG NUMBER	
TR No. 30		TR-30	
TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED		
Rapid Crack Propagation and Arrest in Polymers		Interim Report	
		4. PERFORMING ONG. REPORT NUMBER	
AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(+)	
A.S. Kobayashi and S. Mall		N00014-76-C-0060 / NR 064-478	
University of Washington Department of Mechanical Engi Seattle, Washington 98195	neering	TO PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT HUMBERS	
CONTROLLING OFFICE NAME AND ADDRES	•	October 1977	
Office of Naval Research		13. NUMBER OF PAGES	
Arlington, Virginia		15	
MONITORING AGENCY NAME & ADDRESSUIT	different from Controlling Office)	18. SECURITY CLASS. (of this report)	
		Unclassified	
		TEA DECLASSIFICATION DOUNGRADING	
7. DISTRIBUTION STATEMENT (of the ebetract of	antored in Block 20, II different from	a Report)	
B. SUPPLEMENTARY HOTES			
Crack Propagation Dynamic	re Dynamics c Photoelasticity c Caustics		
Published fracture dynamic pr		afringent polymers i o	

DD 1 JAN 73 1473 EDITION OF 1 NOV 68 18 DESOLETE S/N 0102-014-6601

Unclassified

(continued on reverse)

(Continued) validity of a minimum dynamic fracture toughness, K_{Im}, as a conservative estimate of the crack arrest stress intensity factor for polymers subjected to dynamic loading remains in doubt.